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Lectures





Lecture 1 – O. Carballal (UCM)

Date: 7 October, 2025

Abstract: We illustrate the need for groupoids through a series of examples, primarily following [1, 2],
and discuss some of their recent applications in Mathematical Physics. We also outline potential directions
for future topics of our Reading Groupoid.

Since F. Klein’s Erlangen program and the pioneer work of S. Lie regarding the definition
of geometric structures through their group of automorphisms, the notion of symmetry has
been studied through the theory of groups and their actions.

Symmetry ≡ Groups & actions

Symmetry of homogeneous structures, such us homogeneous spaces, can be fully described
using groups. This is no longer valid when analysing the symmetry of non-homogeneous
structures.

The very first example of symmetry group is the Euclidean group E(n), consisting of rigid
motions of Rn. More concretely,

E(n) := {ϕ : Rn → Rn : ϕ preserves distances}
Every ϕ ∈ E(n) is univocally determined by a rotation A ∈ O(n) and a translation vector
b ∈ Rn as ϕ(x) = Ax+ b and, hence, E(n) is the semidirect product E(n) = O(n) ⋉Rn. Let
us now consider the action E(n) ↷ Rn given by ϕ ·x := ϕ(x) for every ϕ ∈ E(n) and x ∈ Rn.
Then, we define the symmetry group of a subset Ω as the subgroup GΩ of E(n) formed by
those rigid motions leaving Ω invariant; that is,

GΩ := {ϕ ∈ E(n) : ϕ(Ω) = Ω} .
Let us now adopt the following credo:

GΩ is large ≡ Ω is very symmetric

Example 1 (Weinstein’s tiling [2]). Let us study the symmetry group of the following tiling
of R2 by 2× 1-rectangles:

Ω := (2Z× R) ∪ (R× Z) ⊂ R2.

Within this context, every connected component of R2 − Ω is called a tile. Let Λ be the
lattice determined by Ω, corresponding at the borders of the tiles,

Λ = (2Z× R) ∩ (R× Z) = 2Z× Z.
Then, one easily sees that the symmetry group GΩ of Ω consists of the following elements:
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• translations by vectors u ∈ Λ, corresponding to the corner points of Λ;
• central reflections through the points of 1

2Λ = Z × 1
2Z, the latter corresponding to

the centers of the tiles, and
• axial reflections along the vertical and horizontal lines trough the points of 1

2Λ.

Since GΩ is a big group, following the faith in our credo, Ω is very symmetric. Nevertheless,
there are some problems:

• Ω and the lattice Λ have the same symmetry group GΩ = GΛ, although Ω and Λ
look quite different;
• GΩ contains no local information about the action GΩ ↷ R2, and
• the symmetry group of the finite tiling Ω̃ := Ω ∩ B, where B := [0, 2m] × [0, n]

is a ‘bathroom floor’, is isomorphic to the Klein four group Z2 × Z2 (note that it
is spanned by the horizontal and the vertical reflections through the midline of B,
whose composition is the 180º rotation around the centre of B). In particular, we
see that Ω is very symmetric but Ω̃ is not, even though they share the same patterns
and independently of the number of tiles.

To address these issues, we introduce the action groupoid associated with GΩ ↷ Rn,
defined as

GΩ := {(y, ϕ, x) : ϕ ∈ GΩ, x, y ∈ Rn, y = ϕ(x)} , (1)
and endowed with the partially defined multiplication

(z, ψ, y)(y, ϕ, x) := (z, ψ ◦ ϕ, x). (2)
In order to analyse the properties of this partially defined multiplication, we introduce the
source s : GΩ → Rn and target t : GΩ → Rn maps as

s(y, ϕ, x) := x, t(y, ϕ, x) := y, (y, ϕ, x) ∈ GΩ.

One easily sees that (2) satisfies the following four properties:

(1) Composition. Given g, h ∈ GΩ, gh is only defined when s(g) = t(h). In that case,
s(gh) = s(h) and t(gh) = t(g).

(2) Associativity. If g, h, k ∈ GΩ are such that s(g) = t(h) and s(h) = t(k), then
(gh)k = g(hk).

(3) Units. For all x ∈ Rn, let us denote 1x := (x, id, x) ∈ GΩ. Then, 1t(g)g = g = g1s(g)
for all g ∈ GΩ.

(4) Inverse. For all g = (y, ϕ, x) ∈ GΩ there exists g−1 := (x, ϕ−1, y) such that
gg−1 = 1t(g) and g−1g = 1s(g).

These are, exactly, the properties characterising a groupoid.
Definition 1 (Groupoid). A groupoid consists of two sets, G and M , together with maps

• s, t : G →M (source and target projections);
• m : G(2) := {(g, h) : s(g) = t(h)} → G, (g, h) 7→ gh (multiplication);
• u : M → G, x 7→ 1X (unit), and
• i : G → G, g 7→ g−1 (inverse),

satisfying the following four properties:

(1) If z g←− y
h←− x, then z

gh←− x;
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(2) If z g←− y
h←− x

k←− v, then (gh)k = g(hk);
(3) There exists x 1x←− x such that for all y g←− x, we have 1yg = g = 1x, and
(4) If y g←− x, there exists x g−1

←−− y such that gg−1 = 1y and g−1g = 1x.

From now on, we will denote the groupoid as G ⇒M , where the parallel arrows refer to the
source and target maps.
Remark 2. (1) A groupoid is a small category where every arrow is invertible. Within

this language, given a groupoid G ⇒M , G is usually referred to as the set of arrows
of the groupoid, M is the set of objects or units (also called the base of the groupoid),
and G(2) is the set of composable arrows.

(2) We write arrows from left to right to refer to the order of composition. Everything
can be done analogously writing arrows from left to right by swapping the source
and target maps s and t.

(3) Groupoids can be restricted to subsets of the set of units. That is, given a groupoid
G ⇒M , its restriction to N ⊂M is the groupoid

G|N := s−1(N) ∩ t−1(N) ⇒ N.

Definition 3 (Orbit and isotropy group). Let G ⇒ M be a groupoid and let x ∈ M be a
unit.

• The orbit of x is Ox := {y ∈M : there exists g ∈ G, y g←− x}.
• The isotropy group of x is Gx := s−1(x) ∩ t−1(x) = {g ∈ G : x g←− x}.

Example 2 (Weinstein’s tiling continued [2]). Let us now go back to the tiling Ω of R2

introduced in Example 1. First of all, we consider the action groupoid GΩ ⇒ R2 associated
with GΩ ↷ R2, defined in (1); that is,

GΩ := {(y, ϕ, x) : ϕ ∈ GΩ, y
ϕ←− x}⇒ R2,

and let us now consider its restriction to the ‘bathroom floor’ B = [0, 2m] × [0, n], namely
GΩ|B ⇒ B. Then:

• x, y ∈ B belong to the same orbit if they are similarly placed in their tiles, and
• the isotropy group of a point x ∈ B is trivial, unless x ∈ 1

2Λ ∩ B, for which its
isotropy is the Klein four group.

This means that GΩ|B ⇒ B detects local information.

Some applications to Mathematical Physics.

• Groupoid picture of Schwinger’s quantum mechanics by F. M. Ciaglia, A. Ibort,
G. Marmo and collaborators initiated in [3]. Recent work on the formulation of
fields as functors between groupoids by A. Ibort, A. Mas and L. Schiavone [4].
• The material groupoid, a groupoidal approach to continuum mechanics, by M. de

León, M. Epstein and V. Jiménez [5].
• Discrete Lagrangian and Hamiltonian mechanics on Lie groupoids by J. C. Marrero,

D. Mart́ın de Diego, E. Mart́ınez and L. Colombo [6, 7].
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Local Lie group actions. Let us consider the Lie group PGL(2,R) consisting of ho-
mographies of the projective line RP1. Explicitly, one has

PGL(2,R) = GL(2,R)/R,

where R refers to the subgroup of GL(2,R) formed by non-zero diagonal scalar matrices.
Clearly, PGL(2,R) acts on RP1 as[(

a b
c d

)]
· [x0 : x1] = [ax0 + bx1 : cx0 + dx1]. (3)

Let us now analyse how PLG(2,R) acts on the affine line R ≡ RP1 − {[1 : 0]}. Given an

affine point [x0 : x1] = [x : 1] ∈ R, where x := x0/x1, and
[(
a b
c d

)]
∈ PGL(2,R), we have

that [(
a b
c d

)]
· [x : 1] =

[
ax+ b

cx+ d
: 1
]
∈ R, (4)

provided that cx+ d ̸= 0. It is natural to consider the following question:

Does formula (4) define a Lie group action on R?

Of course, the answer to this question is negative, since (4) is only defined on an open
subset of PGL(2,R)×R. Indeed, it defines what is called a local Lie group action (see [8] for
more details). This means, roughly speaking, that (4) only satisfies the defining properties
of a Lie group action on a neighbourhood of the unit element of PGL(2,R).

Hopefully, this problem can be tackled successfully when one considers groupoids rather
than groups. First of all, let us consider the so-called action groupoid associated with the Lie
group action PGL(2,R) ↷ RP1 defined in (3) as the groupoid G := PGL(2,R)×RP1 ⇒ RP1

with source and target maps given by

s ([A], [x0 : x1]) = [x0 : x1], t ([A], [x0 : x1]) = [A] · [x0 : x1],

and multiplication defined as

([B], [y0 : y1])([A], [x0 : x1]) := ([BA], [x0, x1]),

provided that [A] · [x0 : x1] = [y0 : y1]. Then, the restriction of G ⇒ RP1 to the affine line R
is the groupoid

G|R = s−1(R) ∩ t−1(R) =
{([(

a b
c d

)]
, [x : 1]

)
∈ PGL(2,R)× R : cx+ d ̸= 0

}
⇒ R.

Within this context, the target map of G|R ⇒ R is just formula (4).

Singular spaces. Let G ↷ M be a smooth action of a Lie group G on a manifold M
(see [9, Chapter 2] for more details on Lie group actions). Recall that the action is said to
be

• free if g · x = x for some x ∈M , then g = e, and
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• proper if the map Φ : G × M ∋ (g, x) 7→ (g · x, x) ∈ M × M is a proper map.
That is, for every compact subset K ⊂ M ×M we have that Φ−1(K) ⊂ G ×M is
compact. This is equivalent to the following: if (gn) and (xn) are sequences in G
and M , respectively, such that (xn) and (gn · xn) are convergent, then (gn) contains
a converging subsequence.

Provided that the action G ↷ M is free an proper, the quotient manifold M/G has a
unique smooth structure such that the projection map π : M → M/G is a submersion. For
instance, let us consider the action G = Zk ↷M = Rk given by translations:

(n1, . . . , nk) · (x1, . . . , xk) := (x1 + n1, . . . , x
k + nk).

It can be easily seen that this action is free and proper. Hence, the quotient space Rk/Zk,
which is the k-dimensional torus Tk := Rk/Zk, possesses a unique smooth structure such
that the projection π : M →M/G is a submersion.

What happens when the action G↷M is not free and proper?

If action G↷M is not free and proper, G/M is a “singular space”

Example 3. Let us consider the actions SO(2) ↷ R2 and SO(3) ↷ R3 given by rotations.
Both of these actions are proper, since the associated Lie groups are compact. Nevertheless,
they are not free: the origin is a fixed point of every rotation. The “singular spaces” R2/SO(2)
and R3/SO(3) are both homeomorphic to [0,+∞). Notwithstanding, they are not equivalent
as singular spaces because their associated action groupoids SO(2)×R2 ⇒ R2 and SO(3)×
R3 ⇒ R3 are not Morita equivalent. Roughly speaking, this can be justified as follows.
The isotropy group of x ∈ R2 − {0} is trivial, while the isotropy group of x ∈ R3 − {0} is
isomorphic to SO(2).





Lecture 2 – Bartosz M. Zawora (KMMF - UW)

Date: 14 October, 2025

Abstract: During the lecture, I will recall the definition of a groupoid from the previous session and
present the definition of a Lie groupoid. I will provide many useful and important examples and prove some
fundamental properties. The lecture will follow Mackenzie’s book “General Theory of Lie Groupoids and
Lie Algebroids”.

1. Lie groupoids: definition and examples

Definition 4. A groupoid consists of two sets G and M , with maps,
s : G →M (source),
t : G →M (target),
u : M → G | x 7→ 1x (unit),
i : G → G | g 7−→ g−1 (inverse),
κ : G ∗ G → G | (h, g) 7−→ hg where G ∗ G := {(h, g) ∈ G × G | s(h) = t(g)},
satisfying

(1) s(hg) = s(g) and t(hg) = t(h) for all (h, g) ∈ G ∗ G,
(2) j(hg) = (jh)g for every j, h, y ∈ G such that s(j) = t(h) and s(h) = t(g),
(3) s(1x) = t(1x) = x for any x ∈M ,
(4) g1s(g) = g and 1t(y)g = g for every g ∈ G,
(5) For each g ∈ G, there exists two-sided inverse g−1 such that s(g−1) = t(g), t(g−1) =

s(g), g−1g = 1s(g), and gg−1 = 1t(g).

To simplify the notation, G ⇒M denotes a groupoid.
Proposition 5. Let G ⇒M and g ∈ G with s(g) = x and t(g) = y.

(1) If h ∈ G with s(h) = g and hg = g, then h = 1y.
If j ∈ G with t(j) = x and gj = g, then j = 1x.

(2) If h ∈ G with s(h) = y and hg = 1x, then h = g−1.
If j ∈ G with t(j) = x and gj = 1y, then j = g−1.

Definition 6. Let G ⇒ M . Then, Gx := s−1(x) is called a s-fibre over x ∈ M , similarly
Gy := t−1(x) is a t-fibre over y ∈ M , and Gy

x := Gx ∩ Gy = s−1(x) ∩ t−1(y). Moreover,
the set Gx ∩ Gy is called the vertex group. The set of identity elements 1M is defined as
{1m | m ∈M}.
Definition 7. A Lie groupoid G ⇒M is a groupoid G ⇒M with smooth manifold structures
on G and M such that s, t : G → M are surjective submersions, u : M → G is smooth, and
κ : G ∗ G → G is also smooth.

11
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Remark 8. Since s, t : G →M are submersions it follows that Gx, Gy, and (s× t)−1(x, x′) are
closed embedded submanifolds for some x, x′ ∈M .
Definition 9. Let G ⇒ M and g ∈ G with s(g) = x and t(g) = y. Then, the left-
translation corresponding to g is Lg : h ∈ Gx 7→ gh ∈ Gy. Analogously, the right-translation
corresponding to g is Rg : h ∈ Gy 7→ hg ∈ Gx

Definition 10. A Lie groupoid is s-connected if each of its fibres is connected. Likewise,
for any other property α, a Lie groupoid G ⇒M is s-α if each of its fibres has property α.
Proposition 11. Let G ⇒M . The inverse map i : G → G is a diffeomorphism.

Proof. Note that the tangent bundle to G ∗ G is given by
T(G ∗ G) = {(Y,X) ∈ TG × TG | Ts(Y ) = Tt(X)} .

Suppose that h, g ∈ G are such that s(h) = t(g), Y ∈ Th(Gs(h)), and X ∈ Tg(Gt(g)). Then,
by Leibniz rule, it follows

T(h,g)κ(Y,X) = ThRg(Y ) + TgLh(X) . (5)
Define θ : G ∗ G → G ×t G as

θ(h, g) = (h, hg) ,
where G×tG := {(h, g) ∈ G×G | t(h) = t(g)}. Then, one can simply verify that θ is bijective
with θ−1(i, j) = (i, i−1j). To prove that θ is an immersion, suppose that T(h,g)θ(Y,X) =
(0, 0). Moreover, define π1 : (h, g) ∈ G × G 7→ g ∈ G and π2 : (h, g) ∈ G × G 7→ h ∈ G.
Therefore, since π2 ◦ θ = π2, it follows that Y = 0. Consequently, by (5), one has X = 0 and
θ is an immersion.

Furthermore, by the fact that s and t are submersions and dimG ∗ G = dimG ×t G, one
obtains that θ is a diffeomorphism. For µ : h ∈ G 7→ (h, 1t(h)G ×t G, one has

(π1 ◦ θ−1 ◦ µ)(g) = (π1 ◦ θ−1)(g, 1t(g)) = π1(g, g−1) = g−1 .

Hence, (π1 ◦ θ−1 ◦ µ) = i. Since (π1 ◦ θ−1 ◦ µ) is smooth, it follows that i is also smooth. In
addition, since inversion is its own inverse, it is therefore a diffeomorphism. □

Remark 12. The unit map u : M → G is smooth and is an immersion, by the fact that
t ◦ u = idM , s ◦ u = idM .

Consequently, 1M is a closed embedded submanifold of G.
Example 4 (Lie group). A Lie group is a Lie groupoid with a unique unit, namely G⇒ {∗}.
Example 5 (Manifold). Any manifold M can be regarded as a Lie groupoid on itself, where
s = t = idM .
Example 6 (A pair groupoid). For any manifold M , one has a pair groupoid M ×M ⇒M
with arrows (y, x) ∈M ×M , s(y, x) = x, t(y, x) = y, u(x) = (x, x), i(y, x) = (x, y), and

κ((z, y), (y, x)) = (z, x).
Note that Gx

x is trivial.
Example 7 (Trivial groupoid). For a Lie group G and a manifold M one can construct
a Lie groupoid M × G × M ⇒ M with s(y, g, x) = x, t(y, g, x) = y, u(x) = (x, e, x),
i(y, g, x) = (x, g−1, y), and

κ((z, h, y), (y, g, x)) = (y, hg, x) .
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Example 8 (Submersion groupoid). For a surjective submersion π : M → Q one has a
submersion groupoid

M ×Q M ⇒M ,

where M ×Q M = {(y, x) ∈ M ×M | π(y) = π(x)} and is given by the restriction of a pair
groupoid M ×M ⇒M to M ×Q M .
Example 9 (Action groupoid). Let G ×M → M be a Lie group action on a manifold M .
Then, G ×M ⇒ M is an action Lie groupoid with s(g, x) = x, t(g, x) = gx, u(x) = (e, x),
i(g, x) = (g−1, gx), and

κ((g2, y), (g1, x)) = (g2g1, x) ,
of y = g1x. Note that G ×Mx

x is isomorphic to Gx. An action Lie groupoid is denoted as
G∢M .
Example 10. ADD DRAWINGS
Example 11 (Fundamental groupoid). Let M be a smooth manifold and let Π(M) be the
set of homotopy classes [γ] of continuous path γ : [0, 1] → M , relative to fixed and points
γ(0) and γ(1). Then, Π(M) ⇒ M is a groupoid with s([γ]) = γ(0), t([γ])γ(1), u(x) = [γx],
where γx is a constant path at x ∈M , and

κ([δ], [γ]) = [δγ] ,
where δγ is the standard concatenation of γ and δ, namely

Add

Moreover, i([γ]) = [←−γ ], where ←−γ is the reverse path, namely ←−γ (t) = γ(1− t).
Example 12. Let (E, q,M) be a vector bundle. Let Φ(E) denote the set of all vector space
isomorphism ξ : Ex → Ey for some x, y ∈ M . Then, Φ(E) ⇒ M is a frame groupoid with
s(ξ) = x, t(ξ) = y, u(x) = idEx , the inverse of ξ is just an inverse map of ξ, and multiplication
κ is the composition of maps.
Example 13 (Jet groupoid). For a local diffeomorphism φ : U → V between open sets of a
manifold M , and given x ∈ U , let j1

xφ be the one-jet of φ at x ∈ U . Then, J1(M,M), the
set of all such one-jets, has a natural groupoid structure J1(M,M) ⇒ M with s(j1

xφ) = x,
t(j1

xφ) = φ(x), κ(j1
φ(x)ψ, j

1
xφ) = j1

x(ψ ◦ φ), and the inverse is given by i(j1
xφ) = j1

φ(x)φ
−1.

Example 14 (Gauge groupoid). Let (P,M,G, π) be a principal bundle and let (u2, u1, g) ∈
P × P ×G 7→ (u2g, u1g) ∈ P × P . Let [(u2, u1)] denote the equivalence class in (P × P )/G.
Then,

P × P
G

⇒M

is a Lie groupoid with s([(u2, u1)]) = π(u1), t([(u2, u1)]) = π(u2), u(x) = [(v, v)] for v ∈
π−1(x), i([(u2, u1)]) = [(u1, u2)], and

κ(([(u3, u2)]), ([(u2, u1)])) = [(u3, u1)] .
Example 15. Let G be a Lie group with a Lie algebra g. Then, T∗G⇒ g∗ is a Lie groupoid
with s(θ) = θ ◦TeLg, t(θ) = θ ◦TeRg for given θ ∈ T∗

gG. Additionally, for φ ∈ T∗
hG, one has

κ(φ, θ) = φ ◦ ThgRg−1 = θ ◦ ThgLh−1

and i(µ) = µ ∈ T∗
eG with i(θ) = θ ◦ TeLg ◦ Tg−1Rg ∈ T∗

g−1G.
Example 16. Let G ⇒M be a Lie groupoid. Applying tangent functor to each maps yields
a Lie groupoid TG ⇒ TM .
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2. Morphisms and subgroupoids

Definition 13. Let G ⇒ M and G ′ ⇒ M ′ be groupoids. A morphism of groupoids (G ⇒
M)→ G ′ ⇒M ′ is a pair of maps (F, f) such that the following diagrams commute

G G ′ G G ′ G × G G ′ × G

M M ′ M M ′ G G ′

F

s s′

f

t t′

F ×F

κ κ′

f f F

. If M = M ′

and f = idM , then F is called a base-preserving morphism, or morphism over M . If G ⇒M
and G ′ ⇒ M ′ are Lie groupoids, then (F, f) is a Lie groupoid morphism if F and f are
smooth.
Remark 14. The smoothness of F already implies the smoothness of f . Moreover, The above
definition implies that F (h)F (g) is well defined whenever hg is.
Proposition 15. Let (F, f) be a groupoid morphism. Then,

(1) F (1x) = 1f(x) for every x ∈M ,
(2) F (g−1) = F (g)−1 for every g ∈ G.

Definition 16. A morphism (F, f) is an isomorphism of Lie groupoids if F and hence f are
diffeomorphisms.
Example 17. Let G ⇒ M . Then, χ := (t, s) : G × G → M ×M | g 7→ (t(g), s(g)) is a
morphism over M from G ⇒M and M ×M ⇒M . The map χ is called the anchor of G.
Example 18. Let G∢g∗, where the action is given by Ad∗

g−1 . Then, the left-trivialisation of
λ : (g, ν) ∈ G× g∗ 7−→ ν ◦ TgLg−1 ,

is an isomorphism over g∗ of G∢g∗ and T∗G⇒ g∗, see Example 15.
Example 19. For any G ⇒M , the tangent bundle projections pG : TG → G and pM : TM →
M give rise to a Lie groupoid morphism from TG ⇒ TM to G ⇒M .
Definition 17. Let G ⇒ M be a Lie groupoid. A Lie subgroupoid of G ⇒ M is a Lie
groupoid G ′ ⇒ M ′ with injective immersions ι : G ′ → G and ι◦ : M ′ → M such that (ι, ι◦)
is a Lie groupoid morphism. A Lie subgroupoid G ′ ⇒ M ′ of G ⇒ M is embedded if G ′ and
M ′ are embedded sumbanifolds of G and M , respectively. A Lie subgroupoid G ′ ⇒ M ′ of
G ⇒M is wide if M = M ′ and ι◦ = idM .
Example 20. If G ⇒ M is a Lie groupoid and N ⊂ M is an open submanifold, then
GN

N := s−1(N) ∩ t−1(N) is clearly a Lie subgroupoid.
Example 21. If G ⇒ M is a groupoid, the inner (set) subgroupoid is defined as IG :=
{g ∈ G : s(g) = t(g)}. In general, if G ⇒ M is a Lie groupoid, this does not define a Lie
subgroupoid.
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Date: 21 October, 2025

Abstract: In this lecture, I will present locally trivial Lie groupoids, and prove their ”correspondence”
with gauge groupoids. The lecture essentially follows section 1.3 from Mackenzie’s book “General Theory of
Lie groupoids and Lie algebroids”

3. Locally trivial Lie groupoids

Before introducing the definition of locally trivial Lie groupoid, let us recall the notion
of transitive groupoid.
Definition 18. Let G ⇒M be a groupoid (not necessarily Lie groupoid). Then, it is called
transitive if the map (t, s) : G →M ×M is surjective.

Hence, a groupoid G ⇒ M is transitive if for every pair of points x, y ∈ M there is an
element g ∈ G such that s(g) = x and t(g) = y:

•y •x
g

Notice that if a set groupoid G ⇒ M is transitive, then it is trivial. Indeed, fix x ∈ M and
choose a right inverse of the restriction of the target map to the s-fiber of x:

α : M → Gx , t ◦ α = idM .

Then, we can build the following isomorphism of set groupoids:

Φ: M × Gx
x ×M → G , Φ(z, g, y) := s(z) · g · s(y)−1 . (6)

•z •y

•x

s(z)·g·s(y)−1

s(z) s(y)

g

What we are going to study now is how this picture translates into the theory of Lie
groupoids. The adapted notion of transitivity to the smooth category is the following:
Definition 19. Let G ⇒ M be a Lie groupoid. It is called locally trivial if the map
(t, s) : G →M ×M defines a surjective submersion.

Our first objective is to show that the isomorphism defined in Eq.(6) is well defined locally.
In order to achieve this, we need to prove the following characterizations of Definition 19:

15
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Proposition 20. Let G ⇒M denote a Lie groupoid and x ∈M be a fixed point. Then, the
following statements are equivalent:

(1) The Lie groupoid G ⇒M is locally trivial.
(2) The restriction of the target map t : Gx →M defines a surjective submersion.
(3) The map

δ : Gx × Gx → G , δ(g, h) := h · g−1 ,

is a surjective submersion.

Proof. Let us prove the equivalence of the first and last pair of conditions:

• (1) ⇐⇒ (2) (2) clearly follows from (1). Now, to prove the converse, notice that
we may write (t, s) ◦ δ = (t, t). Since, by hypothesis, the map on the left is a
surjective submersion, it follows from the chain rule that (t, s) must be a surjective
submersion as well, so that the Lie groupoid is locally trivial.
• (2) ⇐⇒ (3) Assume (2) and define Gx ×M G = {(η, ξ) ∈ Gx × G : t(η) = t(ξ)},

together with the following map:
Ψ: Gx × Gx → Gx ×M G , Ψ(h, g) := (h, gh−1) .

Using the fact that t : Gx →M defines a surjective submersion, we have that Gx×MG
is a smooth manifold, and that Ψ defines a diffeomorphism. Hence, to show that δ is
a surjective submersion, we only need to show that ψ−1 ◦ δ is. A quick computation
shows that ψ−1 ◦ δ is the projection onto the second factor, which is clearly a
surjective submersion. For the converse, it is enough to write t ◦ δ = t ◦ π, where
π : Gx ×M G → Gx denotes the projection onto the second factor. Now, the map on
the left is clearly a surjective submersion, so t : Gx → M is a surjective submersion
as well.

□

Now we can show that a locally trivial Lie groupoid G ⇒ M is, in fact, locally trivial.
Indeed, choose x ∈ M and let {Ui} be an open cover of M , together with sections of
t : Gx →M

si : Ui → Gx .

Now, if we define maps Φ: Ui × Gx
x × Ui → GUi

Ui
as in Eq.(6) (where the space in the right

denotes the restriction groupoid), we have an isomorphism of Lie groupoids, so it is, in fact,
locally trivial. The maps si are called decomposing sections and the collection {si} is
called decomposing atlas.

Let us give two examples of locally trivial Lie groupoids:
Example 22. Let E → M be a vector bundle. Then, the frame groupoid Φ(E), defined as
the space of linear isomorphisms Ex → Ey is locally trivial.
Example 23. The gauge groupoid of a principal bundle is locally trivial.

In fact, we claim that every locally trivial groupoid is the gauge groupoid of a principal
bundle. Indeed, by our previous discussion, we know that for fixed x ∈M , the map

t : Gx →M
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is a fiber bundle with standard fiber Gx
x (this can be seen taking a decomposing atlas).

Furthermore, Gx
x acts on the right by multiplication:

Φ: Gx × Gx
x → Gx , Φ(h, g) := h · g .

This action is free and defines a principal Gx
x -bundle structure on t : Gx → M . We may

wonder how does this construction depend on the choice of point x ∈ M . The relation is
given as follows:
Proposition 21. Let G ⇒ M be a locally trivial Lie groupoid and let g ∈ G. Denote
x = s(g) and y = t(g). Then, we have the following diffeomorphism

Ψ: Gy → Gx , Φ(h) := h · g

which, together with the “inner” Lie group isomorphism

φ : Gy
y → Gx

x , φ(k) = g−1 · k · g

defines an isomorphism of principal bundles over the identity on M .

Proof. Clearly, Ψ defines a diffeomorphism, and φ defines an isomorphism of Lie groups.
To check that these two maps define an isomorphism of principal bundles, we need to show
that Ψ is equivariant with respect to the action. Indeed, let h ∈ Gy and k ∈ Gy

y . Then,

Ψ(h · k) = h · k · g = (h · g) · (g−1 · k · g) = Ψ(h) · φ(k) ,

which completes the proof. □

Summarizing, to each principal bundle, we can associated its gauge groupoid, which is
locally trivial; and to each locally trivial Lie groupoid we may associate a principal bundle
(after making a choice x ∈ M). These operations are inverses of each other. However, the
isomorphisms depend upon choices, and they cannot be chosen naturally. Nevertheless, the
isomorphisms depend functorially:
Proposition 22. Let M be a manifold, π : P → M be a principal bundle over M , and
G ⇒M be a locally trivial Lie groupoid.

(1) Given u0 ∈ P and denoting x0 := π(u0), the map

P → ((P × P )/G)x0
, u 7→ [(u, u0)] ,

is a diffeomorphism, the map

G→ ((P × P )/G)x0
x0
, g 7→ [(u0 · g, u0)] ,

is an isomorphism of Lie groups, and together they define an isomorphism of princi-
pal bundles. Furthermore, given a morphism of principal bundles f : P → P ′, where
P ′ is a principal bundle over M ′, denoting u′

0 := f(u0) and x′
0 := π′(u′

0), we have a
commutative diagram:

((P × P )/G)x0
((P ′ × P ′)/G′)x′

0

P P ′

,

where the arrows are defined in the obvious manner.
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(2) Given x ∈M , the map
(Gx × Gx)/Gx

x → G , [(g, h)] 7→ gh−1 ,

defines an isomorphism of Lie groupoids. Furthermore, given a morphism of Lie
groupoids φ : G → G ′, where G ′ is a locally trivial Lie groupoid over M ′, if we define
x′ := φ(x), we get a commutative diagram

(Gx × Gx)/Gx
x (G ′

x′ × G ′
x′)/Gx′

x′

G G ′

,

where the arrows are defined in the obvious manner.

Proof. The proof follows from a straight-forward computation. □

An important consequence of Proposition 22 is the following:
Corollary 23. Let G ⇒M denote a locally trivial Lie groupoid and G ′ ⇒M ′ denote a Lie
groupoid (not necessarily locally trivial). Let φ : G → G ′ be a set morphism of groupoids.
Then,

(1) Fix x ∈M . If φ : Gx → Gφ(x) is smooth, so is φ : G → G ′.
(2) If φ is smooth in a neighborhood of the identity, φ is smooth.

Proof. (1) follows straight-forwardly using Proposition 22 (2). (2) follows by checking
(1) for a particular x ∈M , using right translations. □

As we mentioned already, the correspondence should not be thought of as an equivalence,
given that it is not natural. However, we may use constructions from the world of principal
bundles and carry them over to the world of locally trivial Lie groupoids. The most important
of these constructions being the associated bundles. Given a principal G-bundle π : P →M ,
and a left action of G on a manifold F , we can build a fiber bundle P [F ]→M with standard
fiber F by taking the quotient P [F ] := (P × F )/G, where (p, f) ∼ (p · g, g−1 · f). When G
preserves a particular structure on F (group, vector space, hermitian...) the induced bundle
P [F ] inherits this structure fiber wise. For instance if G acts on itself by conjugation, P [G]
is a Lie group bundle. When P is the principal bundle obtained from a locally trivial Lie
groupoid Gx →M , the canonical Lie group bundle may be thought of as the inner groupoid:
Proposition 24. Let G ⇒ M be a locally trivial Lie groupoid, x ∈ M , and Gx[Gx

x ] denote
the canonical Lie group bundle. Then, the map

Gx[Gx
x ]→ G , [(g, h)]→ g · h · g−1

takes values in the inner subgroupoid IG ⊂ G.

Proof. The proof follows from a straight-forward computation. □
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